Search results

1 – 10 of 11
Article
Publication date: 30 September 2013

Mica Grujicic, Patrick Glomski and Bryan Cheeseman

Development of military vehicles capable of surviving shallow-buried explosive blast is seldom done using full-scale prototype testing because of the associated prohibitively high…

Abstract

Purpose

Development of military vehicles capable of surviving shallow-buried explosive blast is seldom done using full-scale prototype testing because of the associated prohibitively high cost, the destructive nature of testing, and the requirements for large-scale experimental-test facilities and a large crew of engineers committed to the task. Instead, tests of small-scale models are generally employed and the model-based results are scaled up to the full-size vehicle. In these scale-up efforts, various dimensional analyses are used whose establishment and validation requires major experimental testing efforts and different-scale models. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, a critical assessment is carried out of some of the most important past efforts aimed at developing the basic dimensional analysis formulation for the problem of impulse loading experienced by target structures (e.g. vehicle hull) due to detonation of explosive charges buried to different depths in sand/soil (of different consistency, porosity, and saturation levels).

Findings

It was found that the analysis can be substantially simplified if only the physical parameters associated with first-order effects are retained and if some of the sand/soil parameters are replaced with their counterparts which better reflect the role of soil (via the effects of soil compaction in the region surrounding the explosive and via the effects of sand-overburden stretching and acceleration before the associated sand bubble bursts and venting of the gaseous detonation products takes place). Once the dimensional analysis is reformulated, a variety of experimental results pertaining to the total blast impulse under different soil conditions, charge configurations, charge deployment strategies, and vehicle ground clearances are used to establish the underlying functional relations.

Originality/value

The present work clearly established that due to the non-dimensional nature of the quantities formulated, the established relations can be utilized across different length scales, i.e. although they are obtained using mainly the small-scale model results, they can be applied at the full vehicle length scale.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 March 2016

Mica Grujicic, Jennifer Snipes, S. Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade…

Abstract

Purpose

To overcome the problem of inferior through-the-thickness mechanical properties displayed by armor-grade composites based on 2-D reinforcement architectures, armor-grade composites based on 3D fiber-reinforcement architectures have recently been investigated experimentally.

Design/methodology/approach

The subject of the present work is armor-grade composite materials reinforced using ultra-high-molecular-weight polyethylene fibers and having four (two 2D and two 3D) prototypical architectures, as well as the derivation of the corresponding material models. The effect of the reinforcement architecture is accounted for by constructing the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) and subjecting them to a series of virtual mechanical tests. The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

It is found that the reinforcement architecture plays a critical role in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic impact applications.

Details

Engineering Computations, vol. 33 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 2016

Mica Grujicic, S Ramaswami, Jennifer Snipes, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

Fiber-reinforced armor-grade polymer-matrix composite materials with a superior penetration resistance are traditionally developed using legacy knowledge and trial-and-error…

290

Abstract

Purpose

Fiber-reinforced armor-grade polymer-matrix composite materials with a superior penetration resistance are traditionally developed using legacy knowledge and trial-and-error empiricism. This approach is generally quite costly and time-consuming and, hence, new (faster and more economical) approaches are needed for the development of high-performance armor-grade composite materials. One of these new approaches is the so-called materials-by-design approach. Within this approach, extensive use is made of the computer-aided engineering (CAE) analyses and of the empirically/theoretically established functional relationships between an armor-grade composite-protected structure, the properties of the composite materials, material microstructure (as characterized at different length-scales) and the material/structure synthesis and fabrication processes. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, a first step is made toward applying the materials-by-design approach to the development of the armor-grade composite materials and protective structures with superior ballistic-penetration resistance. Specifically, CAE analyses are utilized to establish functional relationships between the attributes/properties of the composite material and the penetration resistance of the associated protective structure, and to identify the combination of these properties which maximize the penetration resistance. In a follow-up paper, the materials-by-design approach will be extended to answer the questions such as what microstructural features the material must possess in order for the penetration resistance to be maximized and how such materials should be synthesized/processed.

Findings

The results obtained show that proper adjustment of the material properties results in significant improvements in the protective structure penetration resistance.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to apply the materials-by-design approach to armor-grade composite materials in order to help improve their ballistic-penetration resistance.

Details

International Journal of Structural Integrity, vol. 7 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 May 2015

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Rohan Galgalikar, Ramin Yavari, Chian-Fong Yen, Bryan Cheeseman and Jonathan Montgomery

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been…

Abstract

Purpose

The purpose of this paper is to discuss the recently developed multi-physics computational model for the conventional Gas Metal Arc Welding (GMAW) joining process that has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic limit (i.e. penetration resistance) of the weld.

Design/methodology/approach

The original model consists of five modules, each dedicated to handling a specific aspect of the GMAW process, i.e.: electro-dynamics of the welding-gun; radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and spatial distribution of the as-welded material mechanical properties. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones.

Findings

The upgraded GMAW process model is next applied to the case of butt-welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler-metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with general expectations and prior observations.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to establish, using computational modeling, functional relationships between the GMAW process parameters and the mechanical properties controlling the ballistic limit of the resulting weld.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami, Vasudeva Avuthu, Chian-Fong Yen and Bryan Cheeseman

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that…

Abstract

Purpose

Traditionally, an armor-grade composite is based on a two-dimensional (2D) architecture of its fiber reinforcements. However, various experimental investigations have shown that armor-grade composites based on 2D-reinforcement architectures tend to display inferior through-the-thickness mechanical properties, compromising their ballistic performance. To overcome this problem, armor-grade composites based on three-dimensional (3D) fiber-reinforcement architectures have recently been investigated experimentally. The paper aims to discuss these issues.

Design/methodology/approach

In the present work, continuum-level material models are derived, parameterized and validated for armor-grade composite materials, having four (two 2D and two 3D) prototypical reinforcement architectures based on oriented ultra-high molecular-weight polyethylene fibers. To properly and accurately account for the effect of the reinforcement architecture, the appropriate unit cells (within which the constituent materials and their morphologies are represented explicitly) are constructed and subjected to a series of virtual mechanical tests (VMTs). The results obtained are used within a post-processing analysis to derive and parameterize the corresponding homogenized-material models. One of these models (specifically, the one for 0°/90° cross-collimated fiber architecture) was directly validated by comparing its predictions with the experimental counterparts. The other models are validated by examining their physical soundness and details of their predictions. Lastly, the models are integrated as user-material subroutines, and linked with a commercial finite-element package, in order to carry out a transient non-linear dynamics analysis of ballistic transverse impact of armor-grade composite-material panels with different reinforcement architectures.

Findings

The results obtained clearly revealed the role the reinforcement architecture plays in the overall ballistic limit of the armor panel, as well as in its structural and damage/failure response.

Originality/value

To the authors’ knowledge, the present work is the first reported attempt to assess, computationally, the utility and effectiveness of 3D fiber-reinforcement architectures for ballistic-impact applications.

Details

International Journal of Structural Integrity, vol. 7 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 November 2013

Mica Grujicic, Subrahmanian Ramaswami, Jennifer Snipes, Ramin Yavari, Gary Lickfield, Chian-Fong Yen and Bryan Cheeseman

A series of all-atom molecular-level computational analyses is carried out in order to investigate mechanical transverse (and longitudinal) elastic stiffness and strength of p

578

Abstract

Purpose

A series of all-atom molecular-level computational analyses is carried out in order to investigate mechanical transverse (and longitudinal) elastic stiffness and strength of p-phenylene terephthalamide (PPTA) fibrils/fibers and the effect various microstructural/topological defects have on this behavior. The paper aims to discuss these issues.

Design/methodology/approach

To construct various defects within the molecular-level model, the relevant open-literature experimental and computational results were utilized, while the concentration of defects was set to the values generally encountered under “prototypical” polymer synthesis and fiber fabrication conditions.

Findings

The results obtained revealed: a stochastic character of the PPTA fibril/fiber strength properties; a high level of sensitivity of the PPTA fibril/fiber mechanical properties to the presence, number density, clustering and potency of defects; and a reasonably good agreement between the predicted and the measured mechanical properties.

Originality/value

When quantifying the effect of crystallographic/morphological defects on the mechanical transverse behavior of PPTA fibrils, the stochastic nature of the size/potency of these defects was taken into account.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 2007

M. Grujicic, B. Pandurangan, U. Zecevic, K.L. Koudela and B.A. Cheeseman

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a…

Abstract

The ability of light‐weight all fiber‐reinforced polymer‐matrix composite armor and hybrid composite‐based armor hard‐faced with ceramic tiles to withstand the impact of a non‐Armor‐ Piercing (non‐AP) and AP projectiles is investigated using a transient non‐linear dynamics computational analysis. The results obtained confirm experimental findings that the all‐composite armor, while being able to successfully defeat non‐AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic‐to‐composite areal densities which is associated with a maximum ballistic armor performance against AP threats. The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard‐face/air, hard‐face/backing and backing/air interfaces, projectiles’ wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.

Details

Multidiscipline Modeling in Materials and Structures, vol. 3 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 December 1984

ALTHOUGH much has been written on various aspects of the Falklands Campaign, one area in particular continues to intrigue defence analysts and commentators. It concerns the nature…

Abstract

ALTHOUGH much has been written on various aspects of the Falklands Campaign, one area in particular continues to intrigue defence analysts and commentators. It concerns the nature and role of the ‘black boxes’ that gave ships, land forces and aircraft of the Task Force a vital Electronic Warfare (EW) capability. The extreme sensitivity which normally surrounds the subject means that, even now, little has been made public.

Details

Aircraft Engineering and Aerospace Technology, vol. 56 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 May 1953

At the annual meeting of Cow & Gate Ltd., in April, the Chairman of the Company said: “I think everyone looks forward to the day when the Ministry of Food ceases to exist. This is…

Abstract

At the annual meeting of Cow & Gate Ltd., in April, the Chairman of the Company said: “I think everyone looks forward to the day when the Ministry of Food ceases to exist. This is not meant in any way to reflect upon the ability with which this Ministry was administered during the war and immediate post‐war years, but a Ministry of Food should not really be necessary in peace‐time. Before the war the milk industry was largely governed by the Milk Marketing Board, and we have great admiration for the Board’s activities; but it was representative only of the producers’ side of this great industry. The distributive and manufacturing trade in the British Isles has grown out of all knowledge since 1939, and this country has relied more and more upon home manufacture as well as home production, both during and since the war. If some of the powers at present delegated to the Ministry of Food are to be placed in other hands, they should in all fairness be shared by the producers, distributors and manufacturers, who have at least an equal stake financially and who should be equally capable of discharging these duties in a conscientious and publicspirited manner. In my opinion, moreover, the day is long outlived when it can possibly be expedient or in the public interest to allow a statutory body representing purely producers’ interests to be the sole arbiter in regard to such a vital matter as the nation’s milk supply.”

Details

British Food Journal, vol. 55 no. 5
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 10 November 2014

Robert Detmering, Anna Marie Johnson, Claudene Sproles, Samantha McClellan and Rosalinda Hernandez Linares

– The purpose of this paper is to provide a selected bibliography of recent resources on library instruction and information literacy.

6087

Abstract

Purpose

The purpose of this paper is to provide a selected bibliography of recent resources on library instruction and information literacy.

Design/methodology/approach

Introduces and annotates English-language periodical articles, monographs and other materials on library instruction and information literacy published in 2013.

Findings

Provides information about each source, discusses the characteristics of current scholarship and describes sources that contain unique scholarly contributions and quality reproductions.

Originality/value

The information may be used by librarians and interested parties as a quick reference to literature on library instruction and information literacy.

Details

Reference Services Review, vol. 42 no. 4
Type: Research Article
ISSN: 0090-7324

Keywords

1 – 10 of 11